Search results for " information theory"

showing 10 items of 51 documents

Synergetic and redundant information flow detected by unnormalized Granger causality: application to resting state fMRI

2015

Objectives: We develop a framework for the analysis of synergy and redundancy in the pattern of information flow between subsystems of a complex network. Methods: The presence of redundancy and/or synergy in multivariate time series data renders difficult to estimate the neat flow of information from each driver variable to a given target. We show that adopting an unnormalized definition of Granger causality one may put in evidence redundant multiplets of variables influencing the target by maximizing the total Granger causality to a given target, over all the possible partitions of the set of driving variables. Consequently we introduce a pairwise index of synergy which is zero when two in…

FOS: Computer and information sciencesgranger causality (GC)Multivariate statisticsComputer scienceRestComputer Science - Information TheoryBiomedical EngineeringsynergyFOS: Physical sciencescomputer.software_genre01 natural sciences03 medical and health sciences0302 clinical medicineGranger causality0103 physical sciencesConnectomeRedundancy (engineering)HumansBrain connectivityTime series010306 general physicsModels StatisticalHuman Connectome ProjectResting state fMRIredundancybusiness.industryInformation Theory (cs.IT)functional magnetic resonance imaging (fMRI)BrainPattern recognitionComplex networkMagnetic Resonance ImagingVariable (computer science)Physics - Data Analysis Statistics and ProbabilityQuantitative Biology - Neurons and CognitionFOS: Biological sciencesSettore ING-INF/06 - Bioingegneria Elettronica E InformaticaPairwise comparisonNeurons and Cognition (q-bio.NC)Artificial intelligenceData miningNerve Netbusinesscomputer030217 neurology & neurosurgeryData Analysis Statistics and Probability (physics.data-an)
researchProduct

Habit and physical activity: Theoretical advances, practical implications, and agenda for future research

2019

Abstract Objective Understanding habits may inform intervention development aimed at promoting physical activity maintenance for long-term health. In the present article, I review theory and research on habits applied to physical activity. I provide an overview of contemporary conceptualizations of habit and habit theory; address whether or not physical activity can be habitual; review perspectives on how physical activity habits develop; summarize research on effects of physical activity habits; identify intervention strategies effective in promoting physical activity habits; and propose an agenda for future research on physical activity habits. Design and Methods Conceptual and narrative …

self-regulationbehavior changemedia_common.quotation_subjectApplied psychologyPsychological interventionitsesääntelyAutomaticityrutiinitautomaticity050105 experimental psychology03 medical and health sciences0302 clinical medicinePromotion (rank)tavat (toimintatavat)Intervention (counseling)0501 psychology and cognitive sciencesta315ta515Applied Psychologymedia_commonConceptualizationIntegrated information theory05 social sciencesBehavior changebehavioral intervention030229 sport sciencesroutinepast behaviorHabitPsychologyfyysinen aktiivisuusPsychology of Sport and Exercise
researchProduct

The rightmost equal-cost position problem.

2013

LZ77-based compression schemes compress the input text by replacing factors in the text with an encoded reference to a previous occurrence formed by the couple (length, offset). For a given factor, the smallest is the offset, the smallest is the resulting compression ratio. This is optimally achieved by using the rightmost occurrence of a factor in the previous text. Given a cost function, for instance the minimum number of bits used to represent an integer, we define the Rightmost Equal-Cost Position (REP) problem as the problem of finding one of the occurrences of a factor whose cost is equal to the cost of the rightmost one. We present the Multi-Layer Suffix Tree data structure that, for…

FOS: Computer and information sciencesOffset (computer science)Computer scienceSuffix treeComputer Science - Information Theorylaw.inventionCombinatoricslawLog-log plotComputer Science - Data Structures and AlgorithmsCompression schemetext compressiondictionary text compressionData Structures and Algorithms (cs.DS)LZ77 compressiondata compressionLossless compressionfull text indexSuffix Tree Data StructuresSettore INF/01 - InformaticaInformation Theory (cs.IT)Data structurePrefixCompression ratioCompression scheme; Constant time; Suffix Tree Data StructuresAlgorithmData compressionConstant time
researchProduct

Collective decoherence of cold atoms coupled to a Bose-Einstein condensate

2009

We examine the time evolution of cold atoms (impurities) interacting with an environment consisting of a degenerate bosonic quantum gas. The impurity atoms differ from the environment atoms, being of a different species. This allows one to superimpose two independent trapping potentials, each being effective only on one atomic kind, while transparent to the other. When the environment is homogeneous and the impurities are confined in a potential consisting of a set of double wells, the system can be described in terms of an effective spin-boson model, where the occupation of the left or right well of each site represents the two (pseudo)-spin states. The irreversible dynamics of such system…

PhysicsCondensed Matter::Quantum GasesQuantum PhysicsQuantum decoherenceDephasingDegenerate energy levelsTime evolutionGeneral Physics and AstronomyFOS: Physical sciencesBose Einstein condensates open quantum systems quantum information theoryCondensed Matter::Mesoscopic Systems and Quantum Hall Effectddc:law.inventionlawQuantum Gases (cond-mat.quant-gas)Quantum mechanicsMaster equationCondensed Matter - Quantum GasesQuantum Physics (quant-ph)Bose–Einstein condensateBosonCoherence (physics)
researchProduct

Local Granger causality

2021

Granger causality is a statistical notion of causal influence based on prediction via vector autoregression. For Gaussian variables it is equivalent to transfer entropy, an information-theoretic measure of time-directed information transfer between jointly dependent processes. We exploit such equivalence and calculate exactly the 'local Granger causality', i.e. the profile of the information transfer at each discrete time point in Gaussian processes; in this frame Granger causality is the average of its local version. Our approach offers a robust and computationally fast method to follow the information transfer along the time history of linear stochastic processes, as well as of nonlinear …

FOS: Computer and information sciencesInformation transferGaussianFOS: Physical sciencestechniques; information theory; granger causalityMachine Learning (stat.ML)Quantitative Biology - Quantitative Methods01 natural sciences010305 fluids & plasmasVector autoregressionsymbols.namesakegranger causalityGranger causalityStatistics - Machine Learning0103 physical sciencesApplied mathematicstime serie010306 general physicsQuantitative Methods (q-bio.QM)Mathematicsinformation theoryStochastic processDisordered Systems and Neural Networks (cond-mat.dis-nn)Condensed Matter - Disordered Systems and Neural NetworksComputational Physics (physics.comp-ph)Discrete time and continuous timeAutoregressive modelFOS: Biological sciencesSettore ING-INF/06 - Bioingegneria Elettronica E InformaticasymbolsTransfer entropytechniquesPhysics - Computational Physics
researchProduct

Low-Power Wide-Area Networks for Sustainable IoT

2019

Low-power wide-area (LPWA) networks are attracting extensive attention because of their abilities to offer low-cost and massive connectivity to Internet of Things (IoT) devices distributed over wide geographical areas. This article provides a brief overview on the existing LPWA technologies and useful insights to aid the large-scale deployment of LPWA networks. Particularly, we first review the currently competing candidates of LPWA networks, such as narrowband IoT (NB-IoT) and long range (LoRa), in terms of technical fundamentals and large-scale deployment potential. Then we present two implementation examples on LPWA networks. By analyzing the field-test results, we identify several chall…

FOS: Computer and information sciencesComputer scienceComputer Science - Information Theory0805 Distributed Computing02 engineering and technologylaw.inventionComputer Science - Networking and Internet ArchitectureBluetoothGSMlaw1005 Communications Technologies0202 electrical engineering electronic engineering information engineeringBandwidth (computing)Resource managementElectrical and Electronic EngineeringNetworking and Internet Architecture (cs.NI)business.industryInformation Theory (cs.IT)020206 networking & telecommunicationsComputer Science ApplicationsPower (physics)0906 Electrical and Electronic EngineeringWide areaSoftware deploymentNetworking & TelecommunicationsTelecommunicationsbusinessInternet of Things
researchProduct

Resilience of singlet-state extraction against non-optimal resonance conditions

2008

We have recently presented a protocol for extracting the singlet state of two non-interacting high-dimensional spins through post-selection of the internal state of interaction mediators sent in succession [F. Ciccarello et al., arXiv:0710.3855v1]. The scheme requires each mediator's wavevector to obey appropriate resonance conditions. Here we show the robustness of the scheme in the realistic case where such conditions are not sharply fulfilled.

PhysicsFABRY-PEROT-INTERFEROMETERPhysics and Astronomy (miscellaneous)SpinsCondensed matter physicsquantum information theory transport in mesoscopic systemsState (functional analysis)Resonance (particle physics)Robustness (computer science)Quantum mechanicsSCATTERINGWave vectorResilience (materials science)Singlet stateENTANGLEMENT
researchProduct

Optimal Classical Random Access Codes Using Single d-level Systems

2015

Recently, in the letter [Phys. Rev. Lett. {\bf 114}, 170502 (2015)], Tavakoli et al. derived interesting results by studying classical and quantum random access codes (RACs) in which the parties communicate higher-dimensional systems. They construct quantum RACs with a bigger advantage over classical RACs compared to previously considered RACs with binary alphabet. However, these results crucially hinge upon an unproven assertion that the classical strategy "majority-encoding-identity-decoding" leads to the maximum average success probability achievable for classical RACs; in this article we provide a proof of this intuition. We characterize all optimal classical RACs and show that indeed "…

FOS: Computer and information sciencesQuantum PhysicsComputer Science - Computational ComplexityInformation Theory (cs.IT)Computer Science - Information TheoryFOS: Physical sciencesComputational Complexity (cs.CC)Quantum Physics (quant-ph)Quantitative Biology::Cell Behavior
researchProduct

Multiscale Information Storage of Linear Long-Range Correlated Stochastic Processes

2019

Information storage, reflecting the capability of a dynamical system to keep predictable information during its evolution over time, is a key element of intrinsic distributed computation, useful for the description of the dynamical complexity of several physical and biological processes. Here we introduce a parametric approach which allows one to compute information storage across multiple timescales in stochastic processes displaying both short-term dynamics and long-range correlations (LRC). Our analysis is performed in the popular framework of multiscale entropy, whereby a time series is first "coarse grained" at the chosen timescale through low-pass filtering and downsampling, and then …

Conditional entropyFOS: Computer and information sciencesComputer scienceStochastic processDynamical system01 natural sciencesMeasure (mathematics)010305 fluids & plasmasMethodology (stat.ME)Multiscale Entropy Information Theory ComplexityAutoregressive model0103 physical sciencesState space010306 general physicsRepresentation (mathematics)AlgorithmStatistics - MethodologyParametric statistics
researchProduct

The Max-Product Algorithm Viewed as Linear Data-Fusion: A Distributed Detection Scenario

2019

In this paper, we disclose the statistical behavior of the max-product algorithm configured to solve a maximum a posteriori (MAP) estimation problem in a network of distributed agents. Specifically, we first build a distributed hypothesis test conducted by a max-product iteration over a binary-valued pairwise Markov random field and show that the decision variables obtained are linear combinations of the local log-likelihood ratios observed in the network. Then, we use these linear combinations to formulate the system performance in terms of the false-alarm and detection probabilities. Our findings indicate that, in the hypothesis test concerned, the optimal performance of the max-product a…

FOS: Computer and information sciencesfactor graphsComputer scienceComputer Science - Information TheoryMarkovin ketjut02 engineering and technologyMarkov random fieldsalgoritmit0202 electrical engineering electronic engineering information engineeringMaximum a posteriori estimationmax-product algorithmElectrical and Electronic EngineeringLinear combinationStatistical hypothesis testingdistributed systemsMarkov random fieldspectrum sensingApplied MathematicsNode (networking)Information Theory (cs.IT)linear data-fusionApproximation algorithm020206 networking & telecommunicationsComputer Science Applicationssum-product algorithmPairwise comparisonRandom variableAlgorithmstatistical inference
researchProduct